
 INTRODUCTION 

Passive vibration control strategies have been extensively 
applied in civil engineering to mitigate the effects of 
dynamic loads, such as wind, seismic ground excitation, 
and machinery loads (Spencer & Nagarajaiah, 2003). 
Recently, rotational inertia supplements have gained 
popularity as a part of passive control devices since the 
inerter was proposed (Smith, 2002). The inerter is a 
common feature of rotational inertia supplements, 
converting translational motion to a flywheel's rotational 
motion. It is a mechanical element connecting two 
terminals and produces a large rotational inertia mass 
while utilizing only a small physical mass. Various inerter-
based devices have shown improvement in the dynamic 
performance of general structural systems, tuned mass 
damper systems, and base isolation systems (Hwang et al., 
2007; Ikago et al., 2012; Lazar et al., 2014).  

The inerters used in the previous studies have typically 
adopted a linear model and configuration. Although 
inerters have been used in nonlinear systems (Zhang et al., 
2019), studies considering nonlinearities related to the 
rotational inertia mechanism are rare. That being said, in 
recent years, researchers have explored the effect of 
nonlinearity resulting from the geometric arrangement of 
inerters. The work revealed that the addition of the 
nonlinear inertance mechanism reduces peak force and 
displacement transmissibility, depending on the frequency 
range and amplitude of the excitation in comparison to a 
traditional spring-mass-damper and spring-mass-damper-

inerter in a linear arrangement (Moraes et al., 2018; Yang 
et al., 2020).  

Nonlinear rotational inertial mechanisms can be 
configured such that the inertance of the device varies 
significantly depending on the device's response, 
including the relative displacement of the device or the 
flywheel’s rotational velocity. The large variable inertance 
can cause significant passive changes to the dynamics of 
the system that it is mounted to, which has the potential to 
be utilized in vibration control strategies.  

This paper investigates the effect of nonlinear inertance 
on a single-degree-of-freedom (SDOF) mass-spring-
damper system. The steady-state response under harmonic 
excitation is obtained using an analytical approximation 
based on the harmonic balance method (HBM) and 
validated by numerical integration. Comparisons of the 
spring-mass-damper-nonlinear rotational inertial system's 
performance are made to the traditional spring-mass-
damper and spring-mass-damper-inerter system 
considering force transmissibility and the instantaneous 
natural frequency of the system.   

 NONLINEAR ROTATIONAL INERTIA MODEL 
AND FORMULATION 

The system considered in this work is depicted in Figure 
1, which consists of a one-degree-of-freedom traditional 
spring-mass-damper system attached to a nonlinear 
(cubic) rotational inertial mechanism. The nonlinear 
rotational inertial mechanism with inertance bNL is 
introduced between the rigid mass m1 and the base and is 
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parallel with a spring with stiffness k1 and a damper with 
viscous damping coefficient c1. The mass is subjected to a 
harmonic loading with amplitude fe and frequency . The 
equation of motion for the system is 

3 sinNL emx b x cx kx f t                  (1) 

The cubic relationship between the relative 
acceleration and forced used for the nonlinear rotational 
inertial mechanism is not based on a particular physical 
phenomenon; instead, this type of nonlinearity is assumed 
for the fundamental investigation of the potential for 
nonlinear inertance to affect dynamic systems, which is 
the focus of this work. 

When bNL =0, the system behaves such as a traditional 
spring-mass-damper (linear) system. Therefore, the 
traditional mass-spring-damper is treated as a reference 
when analyzing the performance. Substitution into Eq. (1) 
can be made with the non-dimensional parameters 
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simplified non-dimensional governing equation for this 
system is 
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 FREQUENCY RESPONSE 

3.1 Harmonic Balance Method (HBM) 

In this section, the equation of motion is analyzed using 
the HBM. The system's response is assumed to be, 

 sin sinX A A      , where A and  are the 
response amplitude and phase angle, respectively. 
Substituting the assumed harmonic displacement response 
into Eq. (2)  yields 
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By omitting the higher-order harmonic terms and 
applying trigonometric relationships, Eq.  (3) becomes 
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Balancing the coefficient of cosand sinon both 
sides, we obtain 

 
2 6 33

4 cos
e

A A A F            (5) 

2 sin
e

A F          (6) 

Eliminating  in Eq. (5) and Eq. (6), the relationship 
between the response amplitude and the normalized 
excitation frequency becomes 
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3.2 Numerical Validation 

The Runge-Kutta numerical integration technique 
simulates the time history response, and the steady-state 
vibration amplitude is extracted from that. For this 
analysis, the system parameters are set as =10 and, 
=0.025. Additionally, two forcing amplitudes, Fe=0.05 
and 0.2, are considered. 

Figure 2 presents the frequency response curve for the 
nonlinear system by the HBM and the Runge-Kutta 
method. Both the analytical and numerical curves 
correspond well. However, in the numerical analysis, a 
‘jump’ phenomenon is observed due to multivalued 
amplitudes in the curve's bending. The bending behavior 
observed in the curve is similar to the harmonically excited 
nonlinear energy sink with softening stiffness. It also 
shows that as excitation amplitude increases, the 
maximum response amplitude that can be stably achieved 
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Figure 1. Schematic representation of a SDOF system with a 
nonlinear rotational inertial mechanism  

Figure 2. Frequency response curves for different normalized 
forcing amplitudes 0.05 (left) and 0.2 (right) 



with the numerical solution increases, and the frequency 
with the maximum response, which can be referred to as a 
pseudo resonance frequency, decreases. 

 Figure 3 presents the numerical frequency response 
curves of the damped nonlinear system with different 
initial conditions. The analysis is performed for a forcing 
amplitude of 1 and changes in the initial displacement. 
Higher initial energy produces more mass effects and 
shifts the frequency response curve to higher steady-state 
amplitudes and lower frequencies. This contrasts with the 
behavior of a linear system in which the amplitude of the 
steady-state response is proportional to the amplitude of 
the excitation and does not depend on the initial 
conditions. Moreover, superharmonic pseudo resonance 
cases become more evident as the initial displacement 
increases. These jumps cannot be captured analytically 
with the HBM due to eliminating higher-order harmonics 
in the frequency response representation. It is found that 
the superharmonic pseudo resonance responses show 
continuous ‘jump’ at frequencies where multiple solutions 
exist for higher initial displacement. This happens in 
multiple steady-state solutions when the numerical solver 
determines the moderate-values corresponding to saddle 
points. These saddle points are difficult to realize 
physically due to their unstable nature.  

 FORCE TRANSMISSIBILITY 

The performance of the nonlinear rotational inertia device 
can be evaluated using force transmissibility, which is the 
ratio of the force transmitted to a rigid base to the 
excitation force at a given forcing frequency. The non-
dimensional magnitude of the applied force is ˆ 0.1eF  . 
Thus, the magnitude of force transmissibility can be 
measured using the equation below, 
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Figure 4 compares the force transmissibility of the 
nonlinear rotational inertia system and spring-mass-
damper-inerter system for =0.025 and Fe=0.1. The 
inertance ratios for both nonlinear and linear systems are 
set at 10 for this analysis. It shows that the maximum 

response of the nonlinear rotational inertia system occurs 
at a lower frequency compared to the spring-mass-
damper-inerter system. Due to unstable solutions in the 
nonlinear system analysis, the peak force transmissibility 
cannot be identified. Bifurcation analysis will be carried 
out in the future to determine the peak force 
transmissibility. At higher frequencies, all the curves reach 
a plateau. However, this plateau is much lower in 
amplitude for the nonlinear curve; thus, allowing for more 
effective isolation of high frequencies. The addition of the 
nonlinear rotational inertia mechanism reduces overall 
force transmission. This mechanism can be a matter of 
interest for structural control applications in that it may 
simultaneously reduce response and provide better higher 
frequency isolation. 
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Figure 3. Frequency response curves of damped nonlinear 
system with different initial conditions 

Figure 4. Force transmissibility characteristics of nonlinear 
rotational inertial mechanism and spring-mass-damper-
inerter system (=10, =0.025 and Fe=0.1) 

0.5 1 1.5
Normalized Frequency 

0

50

100

150

200 Linear spring
-mass-damper-

inerter

Nonlinear rotational
 inertia

Figure 5. Instantaneous natural frequency comparison for 
different initial displacements 1 (top) and 5 (bottom)  

 



 TIME HISTORY RESPONSE  

For this analysis, the system parameters are set as =10 
=0, and Fe=1. Figure 5 shows the instantaneous natural 
frequency obtained numerically for different non-
dimensional initial displacements (1 and 5). The natural 
frequencies are obtained by an Eigenvalue analysis at each 
time step considering the mass effects provided by the 
nonlinear rotational inertial mechanism at that time step.  

The dash-dot line represents the natural frequency of 
the mass-spring-damper system; it remains the same for all 
time histories. However, for the nonlinear system, the 
mass effect provided by the nonlinear rotational inertial 
mechanism is constantly changing. Thus, the natural 
frequency is changing throughout the time-history of the 
response. For higher energy input, higher shifts in natural 
frequency are feasible. 

 CONCLUSIONS 

This paper investigates the dynamic behavior of a cubic 
nonlinear rotational inertia mechanism in a SDOF mass-
spring-damper system. Linear inerters have been 
incorporated in systems that have shown effectiveness in 
reducing the response of the structure; however, nonlinear 
rotational inertia mechanisms have not received much 
previous consideration. The frequency response 
relationship is obtained using the harmonic balance 
method. Additionally, force transmissibility was used as 
an index to measure the performance of vibration 
isolation. Numerical simulations were performed 
following the Runge-Kutta technique to validate the 
analytical outcomes.  

The results of this study show that the presence of the 
nonlinear rotational inertial mechanism can reduce the 
dominant frequency and force transmissibility as well as 
the addition of higher frequency dynamics. The study 
reveals that the added mass effect provided by the cubic 
rotational inertial mechanism continually changes and is 
dependent on the initial conditions of the system and the 
amplitude of the excitation. Overall, the study suggests 
that the nonlinear rotational inertial mechanisms can 
provide a beneficial effect in passive vibration control. 
Although a physically realistic device has not been 
proposed for a cubic nonlinear rotational inertial 
mechanism, the findings of this study can help to improve 
the general understanding of the dynamic properties of 
nonlinear rotational inertial attachments for vibration 
mitigation. 
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